Persian Named Entity Recognition based with Local Filters
نویسندگان
چکیده
منابع مشابه
PersoNER: Persian Named-Entity Recognition
Named-Entity Recognition (NER) is still a challenging task for languages with low digital resources. The main difficulties arise from the scarcity of annotated corpora and the consequent problematic training of an effective NER pipeline. To abridge this gap, in this paper we target the Persian language that is spoken by a population of over a hundred million people world-wide. We first present ...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملMemory-Based Named Entity Recognition
We apply a memory-based learner to the CoNLL-2002 shared task: language-independent named entity recognition. We use three additional techniques for improving the base performance of the learner: cascading, feature selection and system combination. The overall system is trained with two types of features: words and substrings of words which are relevant for this particular task. It is tested on...
متن کاملArabic Named Entity Recognition
Stemming is the process of reducing words to their stems or roots. Due to the morphological richness and complexity of the Arabic language, stemming is an essential part of most Natural Language Processing (NLP) tasks for this language. In this paper, we study the impact of different stemming approaches on the Named Entity Recognition (NER) task for Arabic and explore the merits, limitations an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2014
ISSN: 0975-8887
DOI: 10.5120/17510-8062